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Abstract—Usually, in intelligent tutoring systems the task

sequencing is done by means of expert and domain knowledge.

In a former work we presented a new efficient task sequencer
without using the expensive expert and domain knowledge.
This task sequencer only uses former performances and dead
about the next task according to Vygotsky's Zone of Proximal
Development, that is to neither bore nor frustrate the studat.
We aim to support this task sequencer by a further automat-
ically to gain information, namely students affect recogrzed
from his speech input. However, the collection of the data fom
children needed for training an affect recognizer in this fiéd is
challenging as it is costly and complex and one has to conside
privacy issues carefully. These problems lead to small datsets
and limited performances of classification methods. Hencen
this work we propose an approach for improving the affect
recognition in intelligent tutoring systems, which uses asecial
structure of several support vector machines with differen
input feature vectors. Furthermore, we propose a new kind
of features for this problem. Different experiments with two
real data sets show, that our approach is able to improve the
classification performance on average by 49% in comparison
to using a single classifier.

Keywords-intelligent tutoring systems; affect recognition;
support vector machine (SVM); speech features; affect reap
nition performance improvement; plait structure;

I. INTRODUCTION

Nowadays, intelligent tutoring systems are an importan
tool for supporting the education of students for instance®P
in learning mathematics. The main advantages of intelli
gent tutoring systems are the possibility for a student to
practice any time and anywhere, as well as the possibili
of adaptivity and individualization for a single student.
Usually, an adaptive intelligent tutoring system possess
an internal model of the student and a task sequencer whictP
decides which tasks in which order are shown to the stu

dent. Originally, the task sequencing in adaptive inteltig
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approach applies for performance prediction the machine
learning method matrix factorization (see e.g. [4]) to ferm
performance information. Subsequently, it uses the output
of the performance prediction process to sequence the tasks
according to the theory of Vygotsky’s Zone of Proximal
Development [22]. That is the sequencer chooses the next
task in order to neither bore nor frustrate the student or in
other words, the next task should not be too easy or too
hard for the student. In this work we aim to support this
kind of task sequencing in intelligent tutoring systems by
affect recognition applied to speech input from the stuslent
interacting with the system while solving tasks. Approfeia

to the used theory of Vygotsky’s Zone of Proximal Develop-
ment we try to classify features gained from the speech input
as 'the student wasver-challengedoy the last task’, 'the
student wasinder-challengetby the last task’ or 'the student
was in aflow. This information can be used to decide about
the next task. At first glance it seems to make sense to use as
features words related to affects after a speech recognitio
was applied. However, this approach is dependent on the
performance of the speech recognition and inherits itsrerro
Hence, we decided to use features extracted directly from
the sound files, like features gained from speech pauses,
or features gained from initial processing steps of speech
{ecognition. The most efficient state-of-the-art clasatfan
proach for the kind of features used is a support vector
machine (SVM, see e.g. [20] and [16]). However, usually
the collection of data from young students is costly and
omplex and one has to consider privacy issues carefully.
hese facts lead to small data sets in this area and finally
to a limited performance of the support vector machine
plied to the data. Hence, the question arises, if there is
a way to improve the classification performance. A hybrid
neural network plait (HNNP) for improving the classificatio

tutoring systems is done using information gained fromperformance of artificial neural networks applied to signal

expert and domain knowledge and logged information abo
the performance of students in former exercises. In [19]
new efficient sequencer based on a performance predicti
system was presented, which only uses former performan
information from students to sequence the tasks and do
not need the expensive expert and domain knowledge. Th
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'fata like for instance Ground Penetrating Radar data (see

9]) or phonemes (see [1], [14]) was presented in [10]. The

d’ﬂea of this paper is to adapt the plait principle of the HNNP

proach to a structure of support vector machines applied

4o features from speech data. The main contributions of this

aper are: (1) proposal and investigation of new features
or affect recognition in intelligent tutoring systems,) (2
proposal of an SVM plait structure for improving the affect



recognition performance and (3) different experimenthiwit come from the theory of Vygotsky's Zone of Proximal
real data proving the effectiveness of the proposed femtureDevelopment and can be summarized pEsceived task-
and SVM plait. In the following, we will present after the difficulty labels over-challengedflowandunder-challenged
related work section Il the proposed features in section IllFor the sake of simplicity and as examples with lalmedier-
and the proposed SVM plait structure in section IV. Thechallengedtan be observed rarely (in our real data sets there
different experiments and their results are presented andere only 2 of those examples), in this work we focus on
discussed in section V. the binary classification problem of distinguishing betwee
examples of classver-challenge@nd clasglow. With more
data and more examples of classder-challengedne has
Support vector machines (SVM, [2], [5]) are supervisedsimply to adapt the presented approach to a multi-class
machine learning methods which can be used for classificgproblem by substituting the originally used support vector
tion tasks and deliver in many areas the best performance imachines by multi-class support vector machines (see also
comparison to other classification approaches. The librargection V).
LIBSVM ([3]) delivers an efficient and often used imple- _
mentation of an SVM. In the field of emotion and affect A- Features from Amplitudes
recognition SVMs are state-of-the-art for features exé@dc The first kind of features (see also [12], [13]) are features
for instance from speech data (see e.g. [20], [16]). Thosgained from the amplitudes, or the decibel values respec-
features can be disfluencies features like the ones used ftively, of the sound files. More explicitly, the decibel vaki
expert identification in [23], [18] and [15], or for emotion are used to identify pauses within the speech input data. Thi
recognition in [17]. In this work we investigate two differte  is done by defining a threshold on the decibel scale (as done
own kind of features: amplitude and articulation featuse®( e.g. in [15]) which designates which decibel values belang t
section Ill). The amplitude features were already proposedpeech and which ones to pauses (see figure 1). We adjusted
in former work (see [12], [13]), whereas the proposedthe threshold for our experiments in section V by hand, but
articulation features are new work. later on — for the application phase — the threshold should
The idea for our proposed SVM plait approach is basede learned.
on former work ([10], [11], [14]), where we developed The advantage of using features gained from amplitudes
and investigated a hybrid neural network plait (HNNP)is that instead of a full speech recognition approach only a
for improving the classification performance on small andpause identification by means of the mentioned threshold has
noisy signal data sets. The HNNP approach uses differentd be applied before computing the features. That deceases
feature sets from different information sources and diffier the complexity of the affect recognition and one does not
kinds of neural networks with adapted architecture whichinherit the error of the full speech recognition approach,
are retrained interactively within a plait structure usingwhich makes the system more noise robust. Furthermore,
additional side information gained before and during thethese features are independent from the need that students
retraining for a further improvement. The SVM plait has ause words related to affects.
similar structure but it uses the same kind of SVMs within  To compute features for a taskpresented to a student
the plait structure and feature subsets of one informatiofiirst we extract some measurements from the sound file of
source. The architecture of the SVMs within the SVM plait the task, or from pause information gained from the decibel
structure do not need to be adapted, the additional inpuialues respectively:

is added instead to the input feature vectors. The proposed, the total length of pauses; and the total length of
plait structure uses the principles of ensemble methods lik speechs; in the sound file,

stacking, or stacked generalization respectively, whigh a | {he number of pause segments and the number of
explained and investigated for instance in [21]. Different speech segmenis,, within the sbeech input,

plain stacking the SVM plait consists of several layered thewuth pause segmepﬁ“) and thewth speech segment
stackings with different additional inputs. A cascade of <) within the speech input

SVMs is presented in [6], but the goal of that approach . tﬁe seconds; needed by the, student to solve the task.
is to enable a parallelization of SVMs for computing large '

Il. RELATED WORK

data. The final featurest?,...,z! built from the extracted
measurements for a tagkare the following:
[1l. SPEECHFEATURES AND AFFECT CLASSES o Di
As mentioned above for our approach we use features ¥ = Sq (1)
extracted from speech data. We propose two different kinds (Ratio between pauses and speech)
of those features — features from amplitudes and articrati )
features — which are described in the following two subsec- Tj =Np; + N, @)

tions. The class labels to which the features shall be mapped (Frequency of speech pause changes)



« the number of silence tags,;;,, the number of vowels
ny,, the number of obstruents,, and the number of
fricativesng, within the speech input of task

« the lengthsV;(, 0,(), F;*) and sil;") of the uth
vowel, wth obstruent:th fricative and therth silence
tag within the speech input of tagk

The final featurest?, ..., z!? gained from the extracted
measurements are the following:

0
T, = Ngil,

Figure 1. Graphic of the decibel scale of an example soundofila ! sils (9)

student. The two straight horizontal lines indicate theshold. (Number of silence tags)

2 Di i 72“ Vi

TP = —— ! ny, (10)

(P +5:) (3) (Average length of vowels)

(Percentage of pauses of input speech data) 9 9

(w)

e max(pgu)) P 72“’ O
u 4) ’ no; (11)

(Length of maximal pause segment) (Average length of obstruents)

;= LuPi i 3 2. 1
i ®) T Tan (12)
(Length of average pause segment) (Average length of fricatives)
7} = max(s("”) (6) 4 2, sil”
(Length of maximal speech segment) Ti =T Nil, (13)
$(®) (Average length of silence tags)
6 .
T, = =—/—
Length of oo v o} = mex(V,") (14)
ength of average speech segment .
(Leng ge sp g ) (Maximal length of vowels)
7 =t 8) 6 (w)
(Seconds needed for the task) z; = max(0;) (15)
The output of this feature extraction process is a feature (Maximal length of obstruents)
vector x; = (z¥,...,27),i = 1,...m, wherem is the i
! ! ; : z! = max(F-( ))
number of examples and the appropriate class labg). is i PR (16)
The idea behind this kind of features came from the (Maximal length of fricatives)
observation that often children exhibit longer pauses of
silence while thinking about the problem when theyaver- z§ = m;g%X(Sili(T)) a7)
chal_lengedor talk with less and smaller pauses when they (Maximal length of silence tags)
are in aflow (see also [13]).
. . — min(/®
B. Articulation Features a3 = thn(‘/; ) (18)
The second kind of new features we propose are artic- (Minimal length of vowels)
ulation features gained from an intermediate step of the o . w)
speech recognition process. In preparation for the speech Z; :H}jn(Oi ) (19)
recognition in tr_lis_ step the speech input is partitioned int (Minimal length of obstruents)
segments consisting of vowels, consonants — obstruents or
fricatives — and silence tags (as well as some non-speech zlt = min(Fi(z))
features like breathing, but those occurred rarely in our o 2 (20)
collected real data, hence we did not use them for this work). (Minimal length of fricatives)
We use this preliminary information to create a new kind of 12 ()
- s x;* = min(sil;\"’)
features for a task To compute these features first we have g T (21)

to extract some measurements: (Minimal length of silence tags)



The output of this feature extraction process is a feature y

vectorx; = (z9,...,21?),i = 1,...m, where againn is
the number of examples and the appropriate class label is
Yi-

The idea behind this kind of features is that depending on
the affective state the person speaking lengthens or stsorte
vowels, obstruents or fricatives.

LTS
IV. SVM PLAIT ;
The state-of-the-art method for classification applied to
the kind of features described above in section Il is a

support vector machine (SVM). An SVM (see [2], [5]) is a
classifier which searches for a hyperplane which optimally —
with maximal margin — separates the examples of different
classes in the space of the example vectors. By means of the
kernel trick and a kernel function also non-linear problems
can be solved by an SVM. Originally, an SVM solves
binary classification problems but can be extended to multi-
class classification problems (see [3]). As mentioned above
we consider a binary classification problem in this paper.
For finding the mentioned optimal hyperplane the following
optimization problem has to be solved: minimize forb, £

1 9 i
§||W||2+C;§i (22)

subject toy; ((w, ¢(x;)) +b) > 1§, & >0, forall 1 <

7 < m. In the formula abovev is a normal vecton is a bias,
C'is a constantn is the number of examples which consist
of a feature vectok; and the class labe};,i = 1,...,m,

the ¢; > 0 are slack variables angd is a function mapping
the data to a higher dimension to apply the kernel trick.
Usually, this optimization problem is solved in its dualrfar
maximize fora

Z oy — % Z Z aiajyiyjk (Xin) (23)
i=1 i=1 j=1

subject to0 < «; < C'and}_." | a;y; = 0. The appropriate
classification rule is:

f(x) = sgn((w, 6(x)) + ) I, I I
m
(24)
=sgn Z ayik (x,x) +b ] . Figure 2. Architecture of the SVM plait. The plait is compdsef ¢ +
i=1 1 layers Py, P1, ..., Py (¢ is a hyper parameter). Each layer contains 3

- SVMs, which get different feature vectors as input. In evplgit layer
In formula (23) and (24) they; are Lagrange multipliers, from P, on the SVMs are retrained with enhanced input feature vector
k is the kernel function K(x;,x;) = (¢(x;),#(x;))), C  The enhancement is information from the former layer, ngrtie outputs
is a constant appearing as an additional constraint on th%he predicted class labels) of the SVMs in the previoust pégier. After
M . . . . the last plait layerP, a further SVM (SVM) is attached to achieve one
Lagrange multiplierssgn is the sign function, anek is the  common outputy delivering the final classification result.
normal vector % = > " | a;y:i9(x;)).
For our proposed approach the described single SVMs
are interweaved within a plait structure (see figure 2) by
combining the classification decisions of SVMs in formerlayers, as SVMs in later layers learn how to consider
plait layers with the feature vectors and feeding this comthe classification decisions of previous SVMs to improve
bined new feature vectors into further SVMs. In this waytheir own classification performance. The feature vectors

the classification performance is improved over the plaitfor the SVMs SVMO), SVMéO), SVM%O) in the first plait



Table |

layer P, stem only from the original feature vectes; = NUMBERS (#) OF STUDENTS OF EXAMPLES(TASKS OVERALL) AND OF
(29,...,2),4i = 1,...,m, (I + 1) = number of features, EXAMPLES WITH CLASS LABEL over-challengechs WELL AS OF
with amplitude { = 7) or articulation { = 12) features as EXAMPLES WITH CLASS LABEL flow FOR THE GERMAN AND THE

. . . .. . ENGLISH DATA.
described in section Ill. The original feature vector is

diVideq intp as many VECthS as there are SVMs in one plaiq Data set|| # students| # examples| # over-challenged| # flow |
layer, i.e. in figure 2 the first input vectors are:

German 10 34 12 22
svM(© 0 (1-4) English 6 20 6 14
IOZXi ! :(Iia"'v'ri 3)3 (25)
© Table I
I — XSVMz _ (x§1-%)+1 x@'%)) (26) EXPERIMENTS WITH FEATURES FROM AMPLITUDESNUMBERS (#) OF
1 % g Tt ! TRAIN AND TEST EXAMPLES FOR THE2-FOLD CROSS VALIDATION FOR

© l EVERY SUBSET IN BRACKETS THE DISTRIBUTION OF BOTH CLASSES IS
_ o JSYMET o (23)+1 ! 2 NOTED: (# over-challengedt # flow). THE LAST COLUMN REPORTS THE
I, = x; = (z; e X;) (27)
? CLASSIFICATION TEST ERROR OF A SINGLESVM.

If [ is too small (like for the amplitude features) then the

. Data # train | # test | # train | # test || Error
input vectorsly, I; and I, also may overlap to ensure that told 1 | fold 1 | fold 2 | fold 2
there are enough feature values within one vector for a good
classification performance of the single SVMs. The input Gebrmfnl 61+15 61+26 6l+26 6l+15 40,30
feature vectors for the later layers within the plait stoet (subset 1)|| (6+5) | (6+6) | (6+6) | (6+5) :
. . . syM(@ German 11 12 12 11
are different. That is the input feature vectat$ ' , (subset 2)|| (6+5) | (6+6) | (6+6) | (6+5) || 30.30
svm{®  svm{® d) (d) ()
SO for the SVMs SVM?, sYMYY, SVM German-|| 18 | 18 | 18 | 18
in plait layer P; are enhanced by two further inputs: English (9+9) | (9+9) | (9+9) | (9+9) || 36.11
svm(® SYMD gymld—D (subset 1)
x;, =Wy, * Ly ) German- 18 18 18 18
:( _SVMiO) A.SVM;GFU A.SVMéGFl)) (28) English (9+9) (9+9) (9+9) (9+9) 33.33
i » Yi » Ji (subset 2)
L (d—1) (d—1)
= (@0, 2, g e,
SV 1 _sym{d—D Asvmgd*”) A. Data Sets
‘ B ([j’yi (dfl)’yi ) For the experiments we used two different real data sets
(oM g gSWsT Ty (29)  (see table ) collected in the course of the EU project
(1-Lyt1 21y symMUE=D _sym(eD iTalk2Learn ([8]). The first data set was gained from in-
=(z; 2w g Gt ) teractions with German students and the second one from
@ (1) (1) interactions with English students.
SVM ~SVM ~SVM .
x;, ° =Wy, Y LY %) For the German data set a study was conducted in
SYM© syMED sy (30) which the speech and actions of ten 10 to 12 years old
= (x; i 'Yi ) German students were recorded and students perceived task-
_@@P SSvM{t Y ASVMédfl)) difficulties (see section Ill) were reported. During thedstu
’ oo e a paper sheet with fraction tasks was shown to the students
(@-1) (@-1) (@1 L
These further inputgisVMl , ?L-SVMQ an d;giSVMS are angl tt.hey V\_/tehre asked t? paint dby rr:e.antsho.f a Softwa;e for
the outputs, i.e the predicted class labels, of the sypmdanting with a computer — and expiain their observations

and answers. The acoustic speech recordings, consisting of
10 wav files with a length from 15 up to 20 minutes, were
used to gain the input features for affect recognition,the.

svM{*V, svM{*Y | svM{* ) of the previous plait layer
P(q—1). That means that SVM), SVMg‘i) and SVI\/@d) take
into account the classification decisions — wrong or Correc&mplitude and articulation features

— of the previous SVMs SVM _1)* svmy' Y, ,SVMgd . For the English data set the speech data of six British
to. improve their own clq53|f|cat!on. The des_cnbed a}pproaclgtudents in the age of 8 to 11 years were recorded and
will be proven by experiments in the following section V. o herceived task-difficulties reported. During the stttey
students were asked to solve fraction tasks of a tutoring
system on a computer and to explain their observations
To prove the proposed approach, we conducted 4 maiand solutions. The acoustic speech recordings for extigcti
experiments which will be discussed in section V-C, V-D the features for the affect recognition (amplitude feature
and V-E. The real data used and the experimental settingsonsist of 6 wav files with a length from 11 up to 30 minutes.
are described in section V-A and V-B. As the English data set is quite small and we want to find

V. EXPERIMENTS



Table 111 o
CLASSIFICATION TEST ERRORS OF THE SINGLSVMS, ENSEMBLE @
METHODS AND SVM PLAIT APPLIED TO FEATURES FROM AMPLITUDES
OF THE 2 GERMAN-ENGLISH SUBSETS AND THE AVERAGE(LAST
COLUMN). -
X o
~ ®
German-English| German-English|| avrg. §
(subset 1) (subset 2) o
Single SVM || 3611 | 3333 | 34.72] 3
- n _|
svm{” 33.33 30.56 31.95 5 °
svmY 38.89 27.78 33.34 i
svm 36.11 33.33 34.72 =
(%]
Majority 36.11 25.00 30.56 g &1 |--- SVM,
Stacking 25.00 25.00 25.00 - gng
- e 3
| SVM Plait || 22.22 | 19.44 || 20.83] SVMPlait
'I-(_) -
T T T T
. . 1 2 3
out if the features are language independent so that we can Plait |
generalize our system, we did no experiments only with the aitlayer
EnglISh data but with the Eng“Sh data together with theFigure 3. The evolution of the average classification testref the single
German data. SVMs SVM;, SVMa, SVM3 and the SVM plait over the plait layers for
Overall we conducted 4 main experiments: the amplitude features of the German-English data.

() a single SVM applied to features from amplitudes of

the German data, C. Results of Experiment | and I

(I a single SVM applied to features from amplitudes of For experiment | and Il we applied a single SVM to

the German-Enghsh data, : : the amplitude features of the German data and the mixed
() SVM plait with 3 SVMs in each layer applied to . .
: ) German-English data. The results are shown in table Il. The
features from amplitudes of the German-English dataI I .
and classification t_est error is smalle.r for the German dataelon
(IV) SVM plait with 3 SVMs in each layer applied to thgn for the mixed G_erman—Enghs_h data, but the error for the
. . mixed German-English data is still good enough to assume
articulation features of the German data. : . g :
that in cases where the data is too small for training, like ou
The results of the 4 main experiments are reported in th&nglish data, we can enable the training by using furthex dat
following subsections. from a different source, like our German data, and still get a
good classification result. However, the classificationltes
with the single SVM overall are not satisfactory enough and
the question arises if one could improve the classification
For the experiments we used the library LIBSVM ([3]) perfl(_)rn:_ance.f ;engslil\;ln tlh_et ?e)t(; szct;on we investigate the
delivering an implementation of support vector machinesappPlication ot the plait to the data.
We applied SVMs with an_RBF—kerneI and fqr each SVM b Results Experiment of 11|
used we conducted a grid search (according to [7]) to

B. Experimental Settings

estimate the optimal values for the hyper paramefeend In experiment Il we applied the SVM plait with 3 plait
~. The input feature values which are fed into the svMslavers to the amplitude features of the German-English data
are normalized to be in the intervil, 1]. As mentioned in The results are shown in table Ill. Table Il shows the

section Il the SVMs are used to solve a binary classificatiorflassification test errors for both subsets as well as the
problem, i.e. to classify examples as eitlower-challenged ~2vVerage error. The classification test error is reported

or flow. Because of the small size of the data and as the dat4a) for a single SVM (see also experiment I1),

is imbalanced (in table | one can see that there are mordb) for the three single SVMs SV@, SVMéO), SVMéO)

examples with labeflow) we applied a variation of a 2-fold of the first plait layer, were each of them is applied to
cross validation: for every main experiment we split the set ~ one of three overlapping splits of the amplitude feature
of examples with labeflow into 2 subsets and conducted 2 vector (20,...,23), (22,...,2?), (a},...,2])),

different experiments consisting of a 2-fold cross vaidat (c) for two ensemble methods applied to the outputs of
with each of the 2 subsets. This approach leads to balanced SVM%O), SVM%O), SVM%O): majority vote and stacking,
data as one can see in table II. i.e. a subsequent SVM,



. Table IV
(d) the SVM plait. CLASSIFICATION TEST ERRORS OF THE SINGLSVMS, ENSEMBLE

|n table ”l one can see that the SVM p|a|t Outperforms METHODS AND SVM PLAIT APPLIED TO ARTICULATION FEATURES OF
the single SVMs as well as the ensemble methods and THE2 GERMAN SUBSETS AND THE AVERAGE(LAST COLUMN).

improves on average the classification performance by 40 German | German || avrg.
‘IJ|AJ in comparison to the single SVM applied in experiment (subset 1)| (subset 2)

In figure 3 the evolution of the average classification test [ Single svM | 3902 | 31.06 | 3504 ]
error of SYM®”, sSYMS?, svM{?, d = 0,...,(¢+1),q = svmy” 26.14 3030 || 28.22
2, and the SVM plait (withl, ..., (¢ + 2) layers) over the svmy” 39.02 39.02 || 39.02
plait layers is shown. As one can see the error decreases svm{ 48.11 39.77 || 43.94
for all of them over the plait layers. In the third plait layer Majority 34.78 34.78 34.78
the classification test error of the SVM plait is minimal, Stacking 26.14 39.39 32.77
hence_ we applied an SVM plait with 3 plait layers in this SVM Plit || 8.33 2159 || 14.96 |
experiment.

E. Results of Experiment IV 2

In experiment IV we applied the SVM plait with 5 \-\ o SY,M‘
plait layers to the articulation features of the German data € - \ \ o SVMi
The results are shown in table IV. Table IV shows the$® \ ‘-\ —  SVMPlait
classification test errors for both subsets as well as th% g
average error. Similar to experiment lll the classificatiest &
error is reported B 8
(a) for a single SVM applied to the full feature vector =

(29,...,2}2), -% Q -
(b) for the three single SVMs SV, svm{”, svm{ &
of the first plait layer, were each of them is applied @ 8

to one of three splits of the amplitude feature vectorg
((29,...,2d), (x2,...,2%), (z2,...,2}?)),

(c) for two ensemble methods applied to the outputs of
SVM%O), SVMéO), SVMéO): majority vote and stacking, :
i.e. a subsequent SVM, ‘ ‘ ‘ ‘ ‘ ‘ ‘

(d) the SVM plait.

In table IV one can see that the SVM plait outperforms Plait layer

.the single SVMs as well as _t_he _ensemble methods a‘ngigure 4. The evolution of the average classification testref the single

improves on average the classification performance by 57 %yms svMm,, SVM,, SVM; and the SVM plait over the plait layers for

in comparison to the single SVM applied to the full featurethe articulation features of the German data.

vector.

A comparison of the results of the two single SVMs .
applied to the full input feature vectors in experiment |1l Vectors. Furthermore, we proposed a new kind of features

and IV shows that on average the classification performancior that problem stemming from initial processing steps of
on articulation features is similar good as the classificati SP€€ch recognition. The results of our experiments with rea
performance on amplitude features. data sets show that the proposed SVM plait approach is

In figure 4 the evolution of the average classification tes@dl€ to improve the classification performance signifigantl
error of SVM@ SVMé‘i) SVMé‘i) d=0,...,(q+2),q= and that the proposed amplitude and articulation featuees a

4, and the SVM plait (withl, ..., (¢ + 3) layers) ovér the Suitable for affect recognition in intelligent tutoringstgms.

plait layers is shown. As one can see the error decreases ovePme future work will be to investigate how to combine both

the plait layers. In the fifth plait layer the classificatist ~ [€ature types.
error of the SVM plait reaches its minimum, hence we have Moreover, with this work we have shown that the general

applied an SVM plait with 5 plait layers in this experiment. plait structure does not just work with artificial neural
networks like convolutional neural networks or multilayer

VI. CONCLUSIONS ANDFUTURE WORK perceptrons within the HNNP but also with support vector
We presented an approach for improving the affect recogmachines. Hence, some future work would be to investigate,
nition in intelligent tutoring systems by using a plait stru if the plait structure also works with other classifiers aod t
ture of support vector machines with different input featur define a general plait principle.
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